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Averaging multiple facial expressions through subsampling*
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Kong, Hong Kong, People’s Republic of China; cDepartment of Psychology, University of Denver, Denver, USA

ABSTRACT
When perceivers view multiple facial expressions shown concurrently, they can quickly and
precisely extract the mean emotion from the set. Yet it is not clear how many faces in the set
contribute to summary judgments, and how the variance among them influences this process.
To address these questions, we used the subset manipulation and varied emotion variance of
faces in the sets across three experiments. Sets containing sixteen faces, or a subset of
faces randomly selected from the sixteen-face display were presented, and participants judged
the average emotion of each face set on a continuous scale. Results showed that when emotion
variance was relatively large (Experiments 1 & 2), only two faces in the set contributed to
ensemble representations. In Experiment 3 where the emotion variance was smaller, around
three to four faces were likely sampled. However, when directly comparing results from
Experiments 2 and 3, there was no strong evidence supporting the impact of variance in
averaging efficiency. Altogether, these new results suggest that the process of averaging
multiple emotional facial expressions can be explained by capacity-limited subsampling. The
claim that ensemble representations are capacity unlimited or can overcome the bottlenecks in
visual perception might need to be reconsidered.
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Introduction

It has been well established that human observers
have the remarkable ability to integrate information
from multiple visual features or stimuli, and extract
summary statistics (e.g., the mean) about these fea-
tures (Alvarez, 2011; Whitney & Yamanashi Leib,
2018). This kind of ensemble coding, or summary stat-
istical representation provides a rather accurate and
stable impression of the visual world (Cohen,
Dennett, & Kanwisher, 2016; Corbett & Melcher,
2014). Faces are one example of high-level, multidi-
mensional visual stimuli that can be integrated with
one another. For example, mean emotion can be
extracted very rapidly and quite precisely from mul-
tiple facial expressions shown briefly (Haberman &
Whitney, 2007, 2009; Li et al., 2016), even when
limited attentional resources are available (Ji, Rossi, &
Pourtois, 2018).

However, to date, the mechanisms underlying
ensemble perception are still largely unclear and
debated, especially when high-level objects such as
facial expressions are considered. An open question

remaining in the existing visual cognition literature per-
tains to the power or efficiency with which processing
multiple facial expressions can be achieved. For instance,
one couldwonder howmany faces in a set, if not all, con-
tribute to the perception of that crowd’s mean emotion.
This question is reminiscent of a current debate in the lit-
erature about the actual meaning and function of
ensemble representations, and more specifically
whether they offer a means to surpass traditional bottle-
necks in information processing and attention selection
(Alvarez, 2011; Attarha, Moore, & Vecera, 2014; Chong &
Treisman, 2005; Cohen et al., 2016; Ji, Chen, Loeys, &
Pourtois, 2018). If sampling only 3–4 items (this size
being traditionally assumed to correspond to the
upper bound for attention capacity; see Pylyshyn &
Storm, 1988) or even fewer items in a set could ade-
quately explain human observers’ performance when
many more items are shown in the visual field, then
the claim that ensemble representations are capacity
unlimited or can overcome the bottlenecks in visual per-
ception might need to be reconsidered.

In order to examine sampling efficiency, or more
specifically, whether participants actually integrate
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information from multiple objects or sample only a
subset of items from the set, a paradigm known as
the subset manipulation has been introduced and
used successfully in several studies in the past
(Chong, Joo, Emmanouil, & Treisman, 2008; Sweeny,
Haroz, & Whitney, 2013; Wolfe, Kosovicheva, Yamana-
shi Leib, Wood, & Whitney, 2015; Yamanashi Leib et al.,
2014). This procedure allows researchers to estimate
the size of the subset participants use to compute
the average of multiple items, for example using a
subset of 3 items although 16 items are available
and visible in the complete set. Using this procedure,
one assumes that seeing a subset of faces largely
resembles the act of subsampling these faces from a
full set. It allows one to compare how precisely partici-
pants are able to estimate the mean of the full set
when all items are visible (i.e., whole set) to conditions
where only some of the set constituents are visible
(i.e., subsets), with a systematic variation of this
number across them. In the example above, if a partici-
pant’s strategy is to extract information from only one
randomly sampled item and then use this information
to judge the entire crowd, the participant’s estimates
relative to the mean of the whole set will remain the
same regardless of the number of items made
visible (i.e., subset size). On the other hand, if this par-
ticipant samples 3 items, performance will improve
with increasing subset sizes (from 1 to 3), but will
plateau when larger subsets (i.e., 4 or larger) are
used. Hence, averaging performance for the whole
set is compared to subsets with variable sizes, with
the aim to infer an estimate of the number of items
eventually used by the participants in this former
case. Computational modelling has confirmed the
logic of this framework (Sweeny & Whitney, 2014)—
when performance in the subset condition matches
that in the whole-set condition, it is assumed that a
roughly equivalent number of items in the subset
has been used in the estimate of the average for the
whole set.

Using this methodology, Chong and colleagues
(2008) previously found that the accuracy of mean
size perception was better when an entire display of
16 items was presented than when only subsamples
of two to four circles were shown to participants,
suggesting that at least more than four items were
integrated during averaging. Similarly, some earlier
studies reported that ensemble judgments about
facial expressions, identities and gaze directions also

became more precise as the number of displayed
faces increased (Sweeny & Whitney, 2014; Wolfe
et al., 2015; Yamanashi Leib et al., 2014). For instance,
Wolfe and colleagues (2015) showed an overall
decrease in response errors (relative to the entire set
of 24 faces) for estimates of mean expression when
the number of faces presented increased from 1 to
12, indicating that participants likely integrated mul-
tiple items if available; with this number clearly
exceeding the limitations of attention selection (Pyly-
shyn & Storm, 1988). By contrast, Haberman and
Whitney (2010) found that mean emotion discrimi-
nation performance (relative to the whole set) in
their subset condition with four faces did not signifi-
cantly differ from their condition in which the whole
set of 12 faces was presented, though the latter was
better than the conditions with subset of one to
three faces, which suggested that sampling four
faces could adequately explain the performance of
judging mean emotion from 12 faces.

Thus, discrepant findings have been reported in the
literature with regard to how many items are sampled
and integrated when people make summary statistical
evaluations of crowds. One factor that could poten-
tially impact sampling efficiency, and thus explain
this lack of consensus, is the variance of the set. Pre-
viously, we found that inter-item variance strongly
influenced the formation of mean emotion represen-
tations (Ji & Pourtois, 2018). When the variance of
emotional facial expressions in the set was relatively
large, increasing set sizes led to poorer averaging per-
formance, which suggested capacity limitations of
ensemble representations for them (Experiments 1 &
2; Ji & Pourtois, 2018). Moreover, when the emotion
variance was small, averaging performance remained
unaffected by increasing set sizes (see Experiment 3
in Ji & Pourtois, 2018; see also Im et al., 2017; Marchant,
Simons, & de Fockert, 2013). This result could be inter-
preted as indicating that the emotion averaging
process is capacity unlimited, at least under these
experimental conditions. Nonetheless, complemen-
tary simulation results suggested that sampling a
limited number of faces (one to four) could adequately
explain averaging performance observed across the
different set sizes (see Supplementary Figure 3). As a
matter of fact, when the variance was relatively small
(see Ji & Pourtois, 2018), redundancy among items in
the set was high, and accordingly, if participants
sampled just a few items, these were necessarily
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representative of the whole set. Yet, the sampled
items would have been less representative of the
whole set when the variance was large compared to
small. The efficiency of sampling thus appears to be
intuitively related to the variance of the set, and we
examined these two factors simultaneously in the
current study.

Notably, the subset manipulation, which we used
here, is distinct from the set size manipulation we pre-
viously used (Ji &Pourtois, 2018) in two importantways.
First, in the subset manipulation, a large set of items
with some emotion variance therein is created on
each trial, and either the entire set or a subset of
items randomly selected from the whole set is pre-
sented. Participants thus estimate the average based
only on the items that are visible to them. In compari-
son, when the set size manipulation is used, even
though sets of different sizes are displayed, the items
in these sets are not randomly selected from a larger
set, and regularity remains relatively constant across
different set sizes. Second, in the subset manipulation,
the accuracy of averaging performance is always calcu-
lated relative to the whole set, even when that entire
set is not visible to participants. In the set size para-
digm, accuracy is computed relative to the faces that
are actually presented. In essence, the subset approach
provides an estimate of how many items participants
use to extract the mean of a large set with a fixed
number of items, whereas the set size approach
reveals how precisely participants form ensemble rep-
resentations with variable sizes of items used.

The current study aimed to examine whether
sampling efficiency is impacted by the emotion variance
of sets when estimating the average emotion ofmultiple
faces. We used the behavioural subset manipulation
(Wolfe et al., 2015; Yamanashi Leib et al., 2014) to
provide an index of the number of faces likely sampled
by participants to establish the mean representation,
and manipulated emotion variance across three exper-
iments (Experiment 1: large, Experiment 2: medium,
Experiment 3: small), similarly as we did in our previous
study (Ji & Pourtois, 2018). In the current investigation,
we created whole sets of 16 faces (as in Ji & Pourtois,
2018), and on each trial we presented all of these 16
faces, or a subset of 1, 2, 4, or 8 faces randomly selected
from the whole set. As in our previous work, averaging
performance was calculated by computing the absolute
difference between participants’ average emotion judg-
ments and the subjectivemean emotion of the entire set

(i.e., subjective difference scores), which were calculated
based on individual-specific subjective ratings of faces
obtained from a separate emotion rating task. In
addition, we also calculated the objective mean of all
faces in each set (based onmorph units) as in many pre-
vious investigations (Wolfe et al., 2015; Yamanashi Leib
et al., 2014), and then computed the absolute difference
between the average emotion judgments and the objec-
tive mean (i.e., objective difference scores). Importantly,
following the logic of the subsetmanipulation, we calcu-
lated the mean emotion across all 16 faces (the whole
set), no matter howmany faces were actually presented
(subset sizes) to participants. We then compared esti-
mates of the subsets against this mean of the whole
set, even though participants could not have based
their estimates on the whole set since it was not visible
to them (nor could they have known that they were
viewing subsets of a larger set). Based on our previous
studies (Ji et al., 2018; Ji & Pourtois, 2018), here we
hypothesized that only a limited number of faces (e.g.,
within the capacity of attention, namely 3–4) could be
sampled during averaging, and consequently, adding
more faces to the display would not further improve
averaging performance. Regarding the main question
of our study—whether sampling efficiency is impacted
by the variance of sets during averaging—if a similar
number of faces was sampled across these three exper-
iments that varied in emotion variance, then we could
conclude that this process is probably independent
from inter-item variance. However, if this number
varied across the three experiments, then we could con-
clude that the efficiency of subsampling depended on
the variance of the sets.

General methods

Participants

The three experiments included separate samples of
twenty-four participants from Ghent University (Exper-
iment 1: 18–28 years, 20 females; Experiment 2: 18–31
years, 22 females; Experiment 3: 18–27 years, 14
females). The sample size of 24 was determined a
priori. We conducted a power analysis based on an
effect size from a previous investigation using a
similar subset manipulation (Sweeny & Whitney,
2014, Experiment 1, h2

p = .578), with α at .05. This
analysis estimated a sample size of three to obtain
power of 0.95 (1-β). Here, we decided to enlarge our
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sample size to be consistent with our previous behav-
ioural study (see Ji & Pourtois, 2018), and also because
we hoped to observe individual differences in emotion
ratings which would then allow us to conduct analyses
using individual-based subjective indices of averaging
performance in addition to objective indices. All par-
ticipants gave written informed consent and were
compensated 10 Euro per hour. They reported to be
right-handed and had normal or corrected-to-normal
vision. The study protocol was conducted in accord-
ance with the Declaration of Helsinki and approved
by the local ethics committee.

Stimuli

All face stimuli were the same as used in our previous
study (Ji & Pourtois, 2018), including sixteen different
identities, each showing angry, happy and neutral
expressions with closed mouths, selected from the
NimStim database (Tottenham et al., 2009). Face
images were morphed using FantaMorph 5. For each
identity, the morphing was carried out between
angry (Face 1) and happy expressions (Face 50) in
Experiment 1. In Experiments 2 and 3, morphing was
carried out between neutral (Face 1) and the apex of
the corresponding happy expressions (Face 50), or
between the apex of the angry (Face 1) to the corre-
sponding neutral expressions (Face 50) (Figure 1A).
The increase/decrease in emotion intensity between
two adjacent images was denoted as one morph
unit. Here, these morph units were arbitrary and did
not necessarily reflect equivalent changes in subjec-
tive perception of emotion. However, using similar
stimuli, we did show that the changes in morph
units correlated with the average emotion judgments
(Ji & Pourtois, 2018). Each face image subtended a
visual angle 4.03° × 4.28° and was presented against
a homogenous black background.

The face sets visible to participants consisted of 1, 2,
4, 8, or 16 identities conveying different emotional
intensities. In the 16-face set, we first randomly
selected a mean emotional intensity and then four
unique morph units surrounding the mean for each
trial. There were four instances of each morph unit.
The smallest distance between these morph units
was six (mean ± 3, ± 9; as used in previous studies,
see Haberman & Whitney, 2007, 2009) in Experiments
1 & 3 (Figure 1A, top scale), and 12 (mean ± 6, ± 18) in
Experiment 2 (Figure 1A, bottom scale). The variance

of the face sets was largest in Experiment 1, intermedi-
ate in Experiment 2, and smallest in Experiment 3 (var-
iance for Experiments 1 and 3 differed despite
equivalent morph distances because we used
different sets of face morphs for these experiments;
see Supplementary Method and Supplementary
Figure 1). Face sets did not include the endpoints of
the morph ranges (either Face 1 or Face 50). The
mean of each set of faces was randomly selected on
each trial from a uniform distribution of morph units
ranging from 11 to 40 in Experiments 1 & 3, and
from 20 to 31 in Experiment 2. The mean varied in
each trial and was never represented by an individual
face in the set on that trial. The 16 morph units in each
set were randomly paired to the identities within the
set with the limitations that (1) there were always
the same numbers of female and male faces in the
sets, and (2) face identities within the sets were
never repeated. For the subset conditions, one, two,
four, or eight faces were randomly selected from the
original 16-face sets. In the 1-face subset condition,
there was an equal probability of presenting a
female or a male face. The gender distribution was
balanced in the other subset set conditions.

The 16 faces were presented in an invisible 4 × 4
matrix (14.83° × 20.35°) centred on the screen. The
subsets of one, two, four, or eight faces were randomly
located in any of the 16 cells evenly distributed across
the matrix (Figure 1B), leading to an overall lower
spatial density (i.e., more sparse) in the sets with
smaller subset sizes than in the sets with larger
subset sizes. Clustering the faces from the subset
near the centre of the matrix would have introduced
a confound of reduced eccentricity for the smaller
subsets.

Apparatus and procedure

We used a 17′′CRT screen with a refresh rate of 85 Hz,
and the viewing distance was roughly 60 cm. We used
the same average-emotion judgment task as in Ji and
Pourtois (2018), as well as a similar familiarity and prac-
tice phase beforehand. A fixation cross first appeared
at the centre of the screen for 500 ms1, followed by a
face set which consisted of 1, 2, 4, 8, or 16 faces, pre-
sented for 500 ms. The faces in the set were immedi-
ately masked by scrambled face images presented
for 100 ms. The scrambled image was created by
dividing one randomly selected face into 100 square
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pieces, randomly shuffling the locations of the pieces,
and then cropping it to a shape of an average face
with a black background, using a custom MATLAB
script and Adobe Photoshop. The positions of the
faces in the (sub)sets and those of the masks were
identical. The next trial started automatically
1000 ms to 1200 ms after participants responded
(Figure 2). Participants judged the average emotion
of each face set on a visual analogue scale (VAS) by
clicking on a unique horizontal location on the scale
with the mouse. The VAS had endpoints labelled as
Extremely negative and Extremely positive, respectively,
and with the middle point labelled as Neutral. The pos-
itions of the two labels (negative on the left and posi-
tive the right, or the other way around) were
counterbalanced across participants. We used a VAS
for two reasons. First, this approach allowed us to
avoid presenting a test face against which participants
had to compare their average, and hence we limited
biases/reference issues that might have emerged
from presenting different test-face identities. Second,
because we also used a VAS for the post-experiment

ratings of the individual faces, using the same VAS
during the averaging task considerably eased the
computation of subjective differences scores
(described in more detail later).

In Experiments 2 & 3, participants were required to
judge the average emotion of the set from neutral to
extremely positive (half of the scale) for happy faces,
or from neutral to extremely negative for angry faces
in different blocks. The subset size (1, 2, 4, 8, 16) and
the mean emotion (morph units from 11 to 40 in
Experiments 1 & 3, and from 20 to 31 in Experiment
2) of each face set were randomized within blocks.
Every trial had a unique face set to minimize statistical
regularity across trials. In Experiment 1, participants
performed three experimental blocks of 90 trials. In
Experiments 2 & 3, the emotion category (happy,
angry) was blocked, and for each emotion category,
participants performed two experimental blocks of
120 and 150 trials, respectively. The happy and
angry blocks were performed alternately, and the
emotion used in the first block was counterbalanced
across participants. Following the main task,

Figure 1. (A) Examples of faces morphed from angry to happy used in Experiment 1, and from neutral to happy or from angry to neutral
used in Experiments 2 & 3. For each continuum, 50 different images were generated for each face identity. The scales above and below
the face continuums illustrate the construction of face sets with variable emotional expression in Experiments 1 & 2 (mean ± 3, ± 9) and
Experiment 3 (mean ± 6, ± 18), respectively. (B) Example of face sets used in the three experiments, which consisted of a subset of 1, 2,
4, 8 faces, or a whole set of 16 faces. The position of each face in the subset was randomly selected from 16 possible cells, corresponding
to an invisible 4×4 matrix.
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participants rated the emotion intensity and arousal of
each individual face (Face 1 and Face 50 only) on
VASes, similarly to Ji and Pourtois (2018). The VAS
post-test for emotion intensity had two anchors that
were the same as those used in the average
emotion judgment task (Extremely negative and Extre-
mely positive). For arousal, the VAS post-test had the
labels Extremely calm and Extremely excited. The
labels shown on the left and right sides of the VAS
were counterbalanced across participants. The two
tasks were programmed and controlled using E-
Prime Version 2.0 software.

Data analysis

Data conversion
The actual positions participants clicked on the VAS in
the average emotion judgment task and the emotion
rating task were converted to data ranging from 0 to

100 in all three experiments, similarly to Ji and Pourtois
(2018). After conversion, the larger the value, the more
positive the participants judged the (average) emotion;
and conversely the smaller this value, the more negative
the (average) emotion was perceived. The morph units
of each face (1–50) were also converted to match the
range of the converted average emotion judgments;
the larger the morph unit, the more positive the face
stimulus was, and the smaller the morph unit, the
more negative the facial expression was. For each trial,
we extracted the whole-set based objective difference
score by subtracting the average emotion judgment
from the mean morph unit of all 16 faces in each face
set, no matter how many faces were actually made
visible to the participants. A whole-set based subjective
difference score was calculated by subtracting the con-
verted average emotion judgment from the computed
mean emotion intensity of the whole set of 16 faces,
based on participant-specific emotion ratings for the

Figure 2. Average emotion judgment task in Experiments 1-3. Participants judged the perceived average emotion intensity from each
face set on a visual analogue scale, ranging from extremely negative to extremely positive (the order of the two anchors was counter-
balanced across participants). In Experiments 2 & 3, participants were asked to use half of the scale, from neutral to extremely positive in
happy face blocks, and from neutral to extremely negative in angry face blocks. The sets contained 1, 2, 4, 8, or 16 different emotional
faces.
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faces (made at the end of the experiments, see above).
We also computed the subset-based objective and
subset-based subjective difference scores by subtracting
the average emotion judgments from the mean units
and mean emotion intensity of the physically presented
faces (the subset—the faces participants could actually
see) in each set, respectively. This was done in order to
examine whether we could replicate our previous
findings using the set size paradigm (Ji & Pourtois,
2018). We then computed the absolute values of all
the difference scores. Thus, the larger the whole-set
based and subset-based absolute difference scores, the
worse the averaging performance, relative to the
whole set or to the subset, respectively. Notably, the
absolute difference scores did not capture potential
response biases. An additional analysis on the signed
difference scores showed that positive responses
biases were present in all three experiments, but they
were not impacted by variance, and they were similar
for happy and angry faces (see Supplementary
materials).

Data trimming
For the average emotion judgment task, trials with RTs
exceeding 2.5 SDs above or below the mean RT for
each participant (overall 2.8%, 2.5% and 2.3% of
trials in Experiments 1-3, respectively) were excluded.
This standard cutoff was chosen before running data
analyses, similar to Ji and Pourtois (2018). Another
1.7%, 1.1% and 1.6% of trials with mouse clicks
falling excessively far away from the scale (2.5 SDs
above or below the mean position occupied by the
scale on the screen) were excluded in Experiment 1,
2 and 3, respectively. Since participants were required
to use a scale ranging from neutral to extremely posi-
tive or from neutral to extremely negative for the
happy and angry blocks respectively in Experiments
2 & 3, the mouse clicks on the wrong part of the
scale (e.g., judgment on the scale ranging from
neutral to extremely positive in the angry blocks)
were also removed from the analyses, leading to the
exclusion of 2.5% of trials in Experiment 2 and 1.9%
of trials in Experiment 3. In total, 4.4%, 5.9%, and
5.8% of trials were removed from the subsequent ana-
lyses in Experiment 1, 2 and 3, respectively.

Data analysis
To assess whether and how whole set-based and
subset-based objective and subjective absolute

difference scores differed with increasing subset
sizes (1, 2, 4, 8, 16), we conducted multilevel analyses
with random intercepts for each participant using the
lme function available in the nlme package for R (Pin-
heiro, Bates, DebRoy, Sarkar, & Core Team, 2017). The
null model with no fixed effects was first built, and
then the fixed effect of subset size (treated as a categ-
orical variable) was added to the model. In Exper-
iments 2 & 3, the fixed effect of emotion and the
interaction between subset size and emotion was
also introduced to the model sequentially, following
the previous fixed effect. Each model was compared
to the previous model by likelihood ratio tests to
examine whether the added component contributed
to averaging performance significantly. The models
were fit for the four kinds of difference scores separ-
ately. The results of the final models with the best
goodness-of-fit (smallest Akaike information criterion,
Akaike, 1974) are reported (see Results). If one factor
was significant or there were significant interactions
between factors, we conducted post hoc (paired-
samples t tests) and simple effect analyses (Chi-
Square tests of one factor on different levels of
another factor) for the final model using emmeans
and phia (testInteractions) packages in R, respectively.
Degrees of freedom were estimated with the contain-
ment method. A Bonferroni correction was used
whenever multiple comparisons were performed.
The reported descriptive results (mean and standard
deviation) are based on single-trial data.

Results and discussion

Experiment 1

Whole-set based objective difference scores
There was a significant effect of subset size, χ2 (7) =
133.84, p < .001. Post-hoc analyses showed that the
whole-set based objective difference scores in the
subset1 condition (M = 23.28, SD = 14.87) were signifi-
cantly larger than those in all the other subset con-
ditions, ts > 8.20, ps < .001 (Figure 3A). On the other
hand, the objective difference scores did not differ
from each other in the subset2 (M = 19.13, SD =
14.06), subset4 (M = 18.53, SD = 13.84), subset8 (M =
18.26, SD = 13.91), or the set16 conditions (M = 18.84,
SD = 14.02), −1.14 < ts < 1.69, ps > .90. The finding
that the whole-set based difference scores did not
decrease beyond the subset2 condition suggests
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that participants were perhaps pooling information
from only two faces.

Whole-set based subjective difference scores
Subset size contributed to the average emotion judg-
ments significantly, χ2 (7) = 161.54, p < .001. Similar to
the objective difference scores, the whole-set based
subjective difference scores were largest in the
subset1 condition (M = 24.57, SD = 14.34), ts > 8.73,
ps < .001. The difference scores in the subset2 (M =
20.43, SD = 13.54), subset4 (M = 19.63, SD = 13.20),
subset8 (M = 19.22, SD = 13.14) and set16 conditions
(M = 20.21, SD = 13.18) did not differ from each other
significantly, −2.12 < ts < 2.50, ps > .13. This finding

again suggests that participants were integrating
only a limited number of faces, namely two in the
present case.

Subset based objective difference scores
There was a significant effect of subset size, χ2 (7) =
12.25, p = .016. Post-hoc analyses showed that there
was only a significant difference between the
subset1 (M = 18.97, SD = 14.10) and the subset2 con-
dition (M = 17.59, SD = 13.90), t(6857) = 2.81, p
= .0495. Unlike our previous study (Ji & Pourtois,
2018), the subset based objective difference scores
did not differ from each other when there were 4, 8
or 16 faces presented (subset4: M = 17.81, SD = 13.86;
subset8: M = 18.11, SD = 13.91; set16: M = 18.84, SD =
14.02), −2.02 < ts <−.57, ps > .44 (Figure 3A).

Subset based subjective difference scores
The effect of subset size was significant, χ2 (7) = 25.86,
p < .001 (Figure 3B). The subset based subjective
difference scores in the subset1 condition (M = 20.56,
SD = 14.28) were larger than those in the subset2 (M
= 18.52, SD = 13.38), subset4 (M = 19.09, SD = 13.36),
and subset8 conditions (M = 19.08, SD = 13.20), ts >
2.99, ps < .028, but did not differ significantly from
those in the set16 condition (M = 20.21, SD = 13.18), t
(6857) = .69, p > .99. Similar to the subset-based objec-
tive difference scores, the subjective difference scores
did not differ between the subset4, subset8 or set16
conditions, −2.4 < ts < .10, ps > .16.

In addition, as seen in Figure 3, the errors computed
relative to the visible faces (the subset-based differ-
ence scores) were on average lower than those com-
puted relative to the full set (the whole-set based
difference scores), which makes sense because partici-
pants could only see the subset of faces from which
they extracted the mean emotion.

Experiment 2

In Experiment 1, we used faces morphed from angry
to happy expressions, and the emotion variance of
face sets was relatively large. In order to examine
whether sampling efficiency was impacted by the
emotion variance of faces in the set, we reduced the
variance in Experiment 2 by using faces morphed
from neutral to either happy or angry expressions.
An additional analysis (see Supplementary results)

Figure 3. Results of Experiment 1. (A) Objective and (B) subjec-
tive difference scores (means) for each subset condition. The
whole-set based difference scores (solid line) reflect the absolute
difference between the average emotion judgments and the
mean emotion of the whole set, regardless of the subset size.
The subset-based difference scores (dashed line) were the absol-
ute difference between the average emotion judgments and the
mean emotion of the visible faces. Larger values indicate worse
performance on the averaging task. Error bars represent one
standard error of the mean (computed across trials and
participants).
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confirmed that the emotion variance was indeed
smaller in Experiment 2 than Experiment 1.

Whole-set based objective difference scores
There were significant effects both for subset size and
emotion, χ2 (7) = 759.58, χ2 (8) = 16.93, ps < .001. The
interaction between subset size and emotion was
also significant, χ2 (12) = 11.22, p = .02, and adding
this interaction effect to the model improved the
goodness of fit. The difference scores were larger for
averaging angry faces (M = 17.69, SD = 7.76) relative
to happy faces (M = 16.07, SD = 8.39) in the subset1
condition, χ2 (1) = 23.22, p < .001, but they did not
differ significantly in the other subset conditions, ps
> .99 (Figure 4A). Importantly, for both angry and
happy faces, post-hoc analyses showed that the
whole-set based objective difference scores in the
subset1 condition were significantly larger than
those in all the other subset conditions, ts > 16.10,
ps < .001, and the objective difference scores did not
differ from each other in the subset2 (angry: M =
12.44, SD = 8.24; happy: M = 12.04, SD = 8.03),
subset4 (angry: M = 11.99, SD = 7.62; happy: M =
11.69, SD = 7.68), subset8 (angry: M = 11.61, SD =
7.41; happy: M = 11.19, SD = 7.50), or the set16 con-
ditions (angry: M = 11.70, SD = 7.43; happy: M = 11.28,
SD = 7.68), −.30 < ts < 2.61, ps > .09. The whole-set
based difference scores bottomed-out when more
than two faces were visible, which suggests that
only around two faces were integrated to build the
mean emotion representation.

Whole-set based subjective difference scores
Both effects of subset size and emotion were signifi-
cant, χ2 (7) = 592.56, χ2 (8) = 11.84, ps < .001. The inter-
action between subset size and emotion was not
significant, χ2 (12) = 7.71, p = .10, and adding this inter-
action effect to the model did not improve the good-
ness of fit. Similar to the objective difference scores,
the whole-set based subjective difference scores in
the subset1 condition (M = 17.54, SD = 9.20) were sig-
nificantly larger than those in all the other subset con-
ditions, ts > 18.52, ps < .001. In addition, the subjective
difference scores did not differ from each other in the
subset2 (M = 12.66, SD = 8.76), subset4 (M = 12.29, SD
= 8.36), subset8 (M = 12.31, SD = 8.39), or the set16
conditions (M = 12.78, SD = 8.45), −1.84 < ts < 1.42, ps
> .65. On the other hand, the difference scores were
larger for estimates of average emotion on angry

faces (M = 13.77, SD = 8.62) relative to happy faces
(M = 13.22, SD = 9.10), t(10812) = 3.44, p < .001 (Figure
4B). The results confirm that around two faces were
integrated and contributed to mean emotion
perception.

Subset based objective difference scores
There were significant effects of subset size and
emotion, χ2 (7) = 29.02, χ2 (8) = 21.72, ps < .001. The
interaction between subset size and emotion was
not significant, χ2 (12) = 7.18, ps = .13. The subset
based objective difference scores were smaller in the
subset1 condition (M = 10.66, SD = 8.40) than in the
set16 condition (M = 11.49, SD = 7.56), t(10812) =
−3.53, p = .004. Difference scores were smaller in the
subset2 condition (M = 10.30, SD = 7.63) than in the
subset4 (M = 11.01, SD = 7.51), subset8 (M = 11.00,
SD = 7.50) and set16 conditions, ts <−2.99, ps < .028.
Similar to our previous study (Ji & Pourtois, 2018),
the subset based objective difference scores did not
differ from each other when there were 4, 8 or 16
faces presented, −2.11 < ts < .11, ps > .35 (Figure 4A).
The other comparisons between different subset size
conditions were not significant, ps > .99. The subset
based objective difference scores were generally
larger for averaging angry faces (M = 11.25, SD =
7.92) relative to happy faces (M = 10.54, SD = 7.53), t
(10812) = 4.66, p < .001 (Figure 4A).

Subset based subjective difference scores
The effect of subset size was significant, χ2 (7) = 57.68,
p < .001 (Figure 4B). Neither the main effect of
emotion nor the interaction between subset size
and emotion reached significance, χ2 (8) = 0.54, p
= .46, χ2 (12) = 8.90, p = .06. Thus, only the effect of
subset size was kept in the model. Similar to the
subset-based objective difference scores, the subjec-
tive difference scores in the subset1 condition (M =
11.57, SD = 9.19) were smaller than those in the
set16 condition (M = 12.78, SD = 8.45), t (10813) =
−4.70, p < .001. They were also smaller in the
subset2 (M = 10.89, SD = 8.18) than in the subset4
(M = 11.63, SD = 8.40), subset8 (M = 12.00, SD = 8.33)
and set16 conditions, ts <−2.88, ps < .040. The
subset based subjective difference scores in the
set16 condition were significantly larger than those
in the subset4 and subset8 conditions, ts > 3.09, ps
< .02, which is consistent with our previous findings
(Ji & Pourtois, 2018), although the latter two
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conditions did not differ from each other, t(10813) =
−1.41, p > .99.

Experiment 3

The emotion variance was smaller in Experiment 2
than Experiment 1, however, different face stimuli
were used which made it difficult to directly
compare results from these two experiments. In
Experiment 3, we used faces morphed from neutral
to either happy or angry expressions, as in Exper-
iment 2, but the minimal distance between each
emotion unit was smaller in this experiment

compared to Experiment 2, leading to a further
reduction of variance here and more comparability
between the two experiments, which helped to
further examine the effect of emotion variance on
sampling efficiency.

Whole-set based objective difference scores
There was a significant effect of subset size, χ2 (7) =
258.46, p < .001. Emotion also contributed to average
emotion judgments significantly, χ2 (8) = 11.91, p
< .001. The interaction between subset size and
emotion was not significant, χ2 (12) = 4.70, p = .32,
and adding this interaction effect to the model did

Figure 4. Results of Experiment 2. (A) Objective and (B) subjective difference scores (means) for each subset condition, shown separ-
ately for judgments of angry and happy faces. Larger values indicate worse performance on the averaging task. Error bars represent one
standard error of the mean (computed across trials and participants).
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not improve the goodness of fit. As can be seen in
Figure 5, the whole-set based objective difference
scores were largest in the subset1 condition (M =
13.39, SD = 8.30), ts > 8.97, ps < .001. The difference
scores were also significantly larger in the subset2
(M = 11.58, SD = 7.64) compared to the subset4,
subset8, and the set16 conditions (subset4: M =
11.00, SD = 7.55; subset8: M = 10.55, SD = 7.43; set16:
M = 10.68, SD = 7.48), ts > 2.86, ps < .043; while the
latter three conditions did not differ significantly
from each other, −.64 < ts < 2.22, ps > .27. In addition,
the difference scores were generally larger for aver-
aging angry faces (M = 11.66, SD = 7.99) relative to
averaging happy faces (M = 11.20, SD = 7.50), t
(13535) = 3.45, p < .001 (Figure 5A). Based on the
observed whole-set based objective difference
scores which decreased when the subset size
increased from two to four and then levelled off for
larger subset sizes, it seems that around three to
four faces were sampled during averaging in Exper-
iment 3.

Whole-set based subjective difference scores
There were significant effects of subset size, χ2 (7) =
147.45, and emotion, χ2 (8) = 93.27, ps < .001. The
interaction between subset size and emotion also con-
tributed to average emotion judgments significantly,
χ2 (12) = 27.20, p < .001, and adding the interaction
effect to the model improved the goodness of fit.
The difference scores for averaging angry faces were
larger compared to those for averaging happy faces,
ps < .028, except in the set16 condition, p = .54.
When only one face was visible (subset1; angry: M =
14.39, SD = 8.56; happy: M = 12.11, SD = 9.44), the
whole-set based subjective difference scores were
larger than all the other conditions for both angry
and happy faces, ts > 4.88, ps < .001, except that
those in the subset1 condition did not differ signifi-
cantly from those in the set16 condition for the
happy faces (M = 11.53, SD = 8.88), t(13535) = 1.85, p
= .65. For the angry faces, the difference scores in
the subset2 condition (M = 12.41, SD = 8.33) were
also significantly larger than those in the subset4
and subset8 conditions (subset4; M = 11.48, SD =
7.88; subset8; M = 11.48, SD = 7.89), ts > 3.09, ps
< .020, but the difference scores in the subset2,
subset4, and subset8 conditions did not differ signifi-
cantly from the set16 condition (M = 12.01, SD =
8.00), ps > .50. On the other hand, for the happy

faces, the difference scores in the subset2 condition
(subset2; M = 10.34, SD = 8.16) were not significantly
different from those in the subset4 or the subset8 con-
ditions (subset4; M = 10.52, SD = 8.49; subset8; M =
10.60, SD = 8.03), ps > .99, and the difference scores
in these subset conditions were even smaller than
those in the set16 condition (M = 11.53, SD = 8.88), ts
<−3.04, ps < .024 (Figure 5B).

The whole-set based subjective difference scores
generated somewhat complicated results when
emotion variance was relatively small. It seemed that
three to four faces were likely sampled when aver-
aging angry expressions, while around two faces
were integrated when averaging happy expressions.
Notably, the whole-set based subjective difference
scores decreased and then increased to some extent
(i.e., averaging performance improved and then dete-
riorated) when the number of visible happy faces
increased from 1 to 16. This pattern was unexpected
based on our original hypothesis and previous
findings (Sweeny & Whitney, 2014; Yamanashi Leib
et al., 2014) which predicted that the averaging per-
formance should plateau at a certain point. One
reason for these unexpected results might be that
noise levels were actually set-size dependent rather
than stable, as we originally assumed. When we
allowed our estimates of noise to increase with
increasing set sizes in our ideal-observer analyses
(similar to Tokita, Ueda, & Ishiguchi, 2016; also see
Sweeny, Grabowecky, Kim, & Suzuki, 2011; although
note that noise values were arbitrarily chosen in
these analyses, see Supplementary materials), we
observed a U-shaped curve for whole-set based differ-
ence scores (Supplementary Figure 3).

Subset based objective difference scores
The effect of subset size and emotion both contribu-
ted to the model significantly, χ2 (7) = 73.17, χ2 (8) =
20.45, ps < .001. The interaction between subset size
and emotion was significant as well, χ2 (12) = 10.90,
p = .028. The comparisons between subsets were
similar for the two emotion blocks, ps > .23, except
between the subset1 and set16 condition, where the
former was significantly larger than the latter for
angry faces (subset1: M = 12.68, SD = 8.64; set16: M =
10.68, SD = 7.60); this difference between these two
subsets being smaller for happy faces (subset1: M =
11.43, SD = 7.85; set16: M = 10.68, SD = 7.38), p = .03.
The subset-based objective difference scores were
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the largest in the subset1 condition, ts > 2.95, ps
< .032, except that the difference between the
subset1 and subset2 condition did not reach signifi-
cance for happy faces, t(6763) = 2.95, p = .09. Scores
did not differ from each other when there were 2, 4,
8 or 16 faces presented in both angry and happy
blocks, −1.12 < ts < 2.25, ps > .24 (Figure 5A), which
was consistent with our previous study (Ji & Pourtois,
2018).

Subset based subjective difference scores
Both effects of subset size and emotion were signifi-
cant, χ2 (7) = 35.98, χ2 (8) = 57.17, ps < .001. The

interaction between subset size and emotion did not
reach significance, χ2 (12) = 9.28, p = .055. As shown
in Figure 5B, the subset-based subjective difference
scores were larger in the subset1 condition (M =
11.76, SD = 9.65) than the subset2 (M = 10.88, SD =
8.45), subset4 (M = 10.93, SD = 8.19) and subset8 (M
= 11.00, SD = 7.99) conditions, ts > 3.44, ps < .006, but
the latter three conditions did not differ significantly
from each other, −.72 < ts <−.35, ps > .99. Meanwhile,
difference scores were significantly larger (i.e., worse
performance) when all 16 faces were made available
(M = 11.77, SD = 8.45), compared to the conditions
when 2, 4, or 8 faces were presented, ts > 3.55, ps

Figure 5. Results of Experiment 3. (A) Objective and (B) subjective difference scores (means) for each subset condition, shown separ-
ately for angry and happy faces. Larger values indicate worse performance on the averaging task. Error bars represent one standard
error of the mean (computed across trials and participants).
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< .004. It was different from the null set-size effect
found in our previous study where the spatial
density of faces was matched across set sizes (Ji &
Pourtois, 2018). On the other hand, similar to subset-
based objective difference scores, the subjective
difference scores were larger for average judgments
of angry faces (M = 11.80, SD = 8.54) compared with
happy faces (M = 10.73, SD = 8.57), t(13535) = 7.57, p
< .001.

Comparison of experiments 2 and 3

We also directly compared the results of Experiments
2 and 3 where we used the same face stimuli but with
different amounts of variance, in order to examine the
potential impact of emotional variability on sampling
efficiency. We constructed a null model with no
fixed effects first, and then added fixed effects of
subset size, emotion and experiment to the model
sequentially. The interactions between each pair of
factors (subset size and emotion, experiment and
subset size, and experiment and emotion) and their
three-way interactions were also introduced to the
model sequentially, following the previous fixed
effect. Each model was compared to the previous
model by likelihood ratio tests to examine whether
the added component contributed to averaging per-
formance significantly. The models were fit for the
whole-set based objective and subjective difference
scores separately. Similar to Ji and Pourtois (2018),
the range of the mean values (from 20 to 31) in Exper-
iment 2 was smaller than in Experiment 3 (from 11 to
40), thus we selected the trials in Experiment 3 for
which the mean units matched those in Experiment 2.

Both effects of subset size and emotion contributed
to the whole-set based objective difference scores sig-
nificantly, χ2 (7) = 896.85, χ2 (8) = 18.51, ps < .001. The
interaction between subset size and emotion, and the
interaction between subset size and experiment were
significant as well, χ2 (13) = 13.55, χ2 (17) = 47.86, ps
< .009. The effect of experiment did not contribute
to the model significantly, χ2 (18) = .74, p = .039, nor
did the interaction between experiment and
emotion or the three-way interaction between the
three factors, χ2 (18) = 1.45, χ2 (22) = 3.35, ps > .23.
Notably, the whole-set based objective difference
scores only differed in the subset1 condition
between Experiments 2 and 3, χ2 (1), p < .001. More-
over, the comparisons between each pair of subset-

size conditions did not differ significantly between
Experiments 2 and 3, ps > .99, except the comparisons
between subset1 and the other size conditions, ps
< .001. The whole-set based objective difference
scores were different between angry and happy
faces only in the subset1 condition, χ2 (1), p < .001.

The comparisons of whole-set based subjective
difference scores between two experiments were
similar to the objective ones. There were significant
effects of subset size and emotion, χ2 (7) = 638.93, χ2
(8) = 40.97, ps < .001, and significant interactions
between subset size and emotion, χ2 (13) = 12.71, p
= .013, between subset size and experiment, χ2 (17)
= 57.45, p < .001, and between experiment and
emotion, χ2 (18) = 8.90, p = .003. Neither the effect of
experiment nor the interaction between the three
factors was significant, χ2 (9) = 2.75, χ2 (22) = 7.98, ps
> .097. Similar to the objective scores, the whole-set
based subjective difference scores were different
between Experiments 2 and 3 in the subset1 condition
only, χ2 (1) = 18.36, p < .001, and the comparisons
between the subset1 and any other size conditions
were significantly different between two experiments,
ps < .001, but not the other pairs of comparisons, ps
> .99. The whole-set based subjective difference
scores were larger for angry than happy faces in the
subset1, subset2, and subset4 conditions, χ2 (1) =
58.39, χ2 (1) = 26.47, χ2 (1) = 14.74, ps < .001, but not
the other set-size conditions, ps > .10.

General discussion

The current study examined whether subsampling
during averaging of multiple facial expressions
depends on emotion variance in the set. Using the
subset manipulation, different subsets of faces with
variable intensities of expression were presented to
participants across three experiments, who made esti-
mates of the average emotion of these sets. Averaging
performance for each subset size was compared to a
condition in which all faces (n = 16) were available,
in order to infer the number of faces eventually
sampled by participants to perform this task. Our
results suggest that extracting mean emotion from
multiple faces can be explained by subsampling with
a limited perceptual capacity. However, we did not
find strong evidence that sampling efficiency was
modulated by the inter-item variance in the sets, at
least in this study where the emotion variance of

VISUAL COGNITION 13



faces was roughly in the range of 8 and 25 (see Sup-
plementary Figure 1).

Using the subset manipulation, we tested the
hypothesis that during averaging, more than one
face would eventually be sampled and used to form
an ensemble representation. If only one item was ran-
domly selected from the set, then the averaging per-
formance, when compared to the mean of the
whole set (n = 16), should remain constant regardless
of how many items were made visible to the partici-
pants (Wolfe et al., 2015; Yamanashi et al., 2014 ; see
also our simulation results in Supplementary Figure
2; and those from Sweeny & Whitney, 2014). In all
three experiments, results showed that the whole-set
based difference scores were significantly smaller
(i.e., better performance) when two faces were pre-
sented relative to a single face, thereby ruling out
the mere use of a one-face sampling strategy when
extracting mean emotion from multiple faces shown
concurrently. Integrating more than one face is con-
sistent with the defining feature of ensemble coding
recently put forward by Whitney and Yamanashi
Leib (2018). Accordingly, our results lend support to
the assumption that genuine ensemble represen-
tations of facial expressions were formed by the par-
ticipants in our study.

In Experiments 1 and 2, where the emotion variance
was high and medium, respectively, the whole-set
based difference scores remained stable when the
subset size increased from two to sixteen faces,
suggesting therefore that probably only two faces
were actually integrated with one another. Interest-
ingly, when the emotion variance was further
reduced in Experiment 3, the whole-set based objec-
tive difference scores dropped substantially from
one to two faces and continued to decrease from
the subset2 to subset4 condition, before they levelled
off with further increasing subset sizes, which
suggested that around three to four faces might
have been sampled and averaged together.
However, we are cautious about concluding that aver-
aging efficiency seemed to improve when emotion
variance decreased, since the whole-set based subjec-
tive difference scores showed a complex pattern of
results and direct comparisons between Experiments
2 and 3 did not provide evidence that variance
impacted sampling efficiency. Notwithstanding this
caveat, we suggest that limited-capacity sampling
(i.e., no more than four faces or four faces’ worth of

information) could satisfactorily explain our new
results. A similar interpretation was made previously
for the averaging of size information by Myczek and
Simons (2008).

By contrast, using a similar subset method, Wolfe
and colleagues (2015) showed that at least twelve
faces in a 24-face set were sampled. They found that
averaging performance continued to improve when
the number of visible faces increased from 1 to 12.
Moreover, under gaze-contingent foveal occlusion
where only peripheral vision could be used by partici-
pants, their results remained the same (Wolfe et al.,
2015). Tentatively, this discrepancy between these
and our new results might be explained by several
methodological factors. For example, a 1500 ms stimu-
lus presentation time was used in Wolfe et al. (2015),
whereas the faces in the current study were presented
for 500 ms only and immediately masked. It has been
shown previously that increasing exposure time
improved average emotion perception (Haberman &
Whitney, 2009; Li et al., 2016). Although some
studies have reported an invariance in the sampling
efficiency with changing durations for some stimulus
categories (see Sweeny et al., 2013 for biological
motion), it remains unclear whether the same holds
true when different facial expressions have to be aver-
aged. Moreover, unlike Wolfe et al. (2015), we used
face stimuli from different identities. Previously, Im
et al. (2017) showed that implicit average emotion
perception did not differ when identical or different
facial identities were used. However, it remains to be
determined whether different identities might impair
performance when explicit averaging is required, con-
sidering that perception of facial expression and iden-
tity are inter-dependent (e.g., Calder & Young, 2005).

Furthermore, Wolfe et al. (2015) used a normal dis-
tribution for selecting the emotional intensities of set
members, whereas we selected emotion units from a
uniform distribution for the full set, always with four
repetitions of each unique unit, resulting in a generally
smaller amount of emotion variance compared to
Wolfe et al. (2015). Indeed, it has been shown that
when a set has no variance (i.e., all items are identical),
only one item may be sampled (Allard & Cavanagh,
2012). Taking these previous studies together, it is
reasonable that more items may have been sampled
when the variance increased in our sets, but the
range of emotion variance we employed was not sen-
sitive enough to yield a systematic effect on the
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averaging efficiency. The actual relationship between
emotion variance, sampling and averaging is not
entirely clear yet, and needs to be elucidated further.
Several unanswered questions remain. (i) Below
which variance level does the averaging process
cease, and as a result, only a single face actually con-
tributes to the percept? (ii) Symmetrically, above
which level must emotion variance be held preferably
to yield an averaging process that includes manymore
faces (i.e., more than 4)? (iii) Within a certain range of
variance, is there a linear relationship between var-
iance and averaging efficiency or might more compli-
cated relationships be at work? Additional empirical
work is needed to answer these questions.

At a theoretical level, our new results also have
important implications for understanding the percep-
tual mechanisms underlying ensemble represen-
tations for multiple facial expressions. First, although
sampling efficiency was not unambiguously impacted
by variance in the current study, our results do suggest
a potential interaction between mean and variance in
averaging performance (e.g., interaction between
subset size and experiment). These two kinds of
summary statistics may be processed in parallel, and
may involve different cognitive processes (Khvostov
& Utochkin, 2019; Yang, Tokita, & Ishiguchi, 2018).
Alternatively, these two important summary statistics
could also interact with each other. In agreement
with this view, in a previous study (Tong, Ji, Chen, &
Fu, 2015), variance perception was found to be
impacted by the stability of the mean, whereas in
other investigations, perception of the mean was
clearly modulated by variance (Ji & Pourtois, 2018;
Marchant et al., 2013; Utochkin & Tiurina, 2014; but
not in Ying & Xu, 2017, perhaps because implicit tem-
poral ensemble coding was involved in their adap-
tation task). Second, in both Experiments 1 & 3,
extraction of mean emotion was significantly worse
(i.e., larger subset based difference scores, namely
the error was larger relative to the mean of the faces
that were actually presented) when there was only
one face in the set (the subset 1 condition) compared
to the other conditions where a variable number of
multiple faces was presented. This outcome is consist-
ent with what was previously referred to as the “power
of averaging” in the existing literature (Alvarez, 2011).
Perceivers appear to be able to compute an accurate
representation of the scene that allows reducing and
even cancelling out the noise carried by each

individual item. However, as our results show, the
power of averaging is not unlimited. When many
faces were presented (i.e., two or more), perception
of the average emotion did not improve further.
There were some exceptions, as in Experiment 2, for
example, where averaging fewer faces in the set
turned out to be better than sampling more faces.
This result is unexpected and awaits replication. More-
over, in Experiment 1, subset-based difference scores
did not differ when four, eight or sixteen faces had
to be averaged. As such, this null subset-size effect
for averaging angry and happy facial expressions is
somewhat at odds with what we found in our previous
study (see Experiment 1 in Ji & Pourtois, 2018, where a
clear set-size effect was reported). At this point, we can
only speculate on the possible causes of this discre-
pancy, but two factors are worth considering. First,
the subsets of faces were randomly selected from
the 16-face sets in the current study, and the sets con-
taining smaller numbers of faces actually had smaller
variance than the larger sets (see Supplementary
Figure 1), which was different from Ji and Pourtois
(2018) where four unique emotion units were always
selected and the emotion variance remained constant
across different set sizes. Smaller variance might have
contributed to the smaller difference scores (i.e., better
averaging performance) in the subset4 and subset8
conditions (see also Marchant et al., 2013; Utochkin
& Tiurina, 2014). Second, here we used random
locations of faces in the subset, and thus did not
control spatial density across the different set sizes,
something we explicitly did in our previous study (Ji
& Pourtois, 2018). It has been suggested previously
that mean orientation and mean size perception is
generally robust and resistant to changes in density
(Chong & Treisman, 2005; Dakin, 2001). However, it
remains an open question for future research
whether sparser displays with smaller numbers of
faces could artificially impair emotion-averaging
ability, which would in turn lead to worse performance
in smaller subset conditions and thus could explain
the lack of differences between these conditions and
the set16 condition in the current study.

Notably, the lack of a set-size effect (apart from the
one-face condition) in averaging performance in the
current study does not necessarily confirm unlim-
ited-capacity for, or parallel processing of, multiple
faces. Based on the results of our ideal observer ana-
lyses (see Supplementary results, simulations
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section), the subset-based difference scores appeared
to be flat when the number of faces increased from
four to sixteen, even though only two faces were ran-
domly sampled and averaged, as our empirical results
suggest. In other words, sampling a limited number of
faces (e.g., less than three or four) could result in an
unchanged averaging performance across the
different set sizes. Accordingly, the conclusion of a
parallel- or capacity-unlimited processing for multiple
items based on findings revealing a null set-size effect
might need to be reconsidered, and eventually
amended somehow (Haberman & Whitney, 2007,
2009; Im et al., 2017; Marchant et al., 2013; Utochkin
& Tiurina, 2014). In this context, Allik and colleagues
previously proposed an intriguing “Noise and Selec-
tion” model for mean size perception (Allik, Toom,
Raidvee, Averin, & Kreegipuu, 2013). It might be
equally valid for averaging high-level multidimen-
sional stimuli, such as emotional expressions. The
measurement of each face necessarily contains
noise, and only a limited number of faces are presum-
ably integrated in the computation of mean emotion.
Although we included different identities to increase
the heterogeneity of face sets and considered the
inter-individual differences in emotion perception by
computing subjective difference scores, a few faces
likely represented the whole set adequately to some
extent already. When similar items are grouped
together, any item selected in the set necessarily pro-
vides a representative estimate of the whole set,
which might explain the limited-capacity subsampling
on one hand, and constant (noisy) averaging perform-
ance with increasing set sizes on the other hand.

Using the subset manipulation, we assumed that
perceptual experience of judging a subset of faces
largely resembled the experience of subsampling
and pooling these faces from an entire set. Admittedly,
however, these two kinds of experience could never
be identical. For example, in subset conditions (e.g.,
two faces), the sampling process has already been
done for participants, whereas if two faces are to be
sampled in the whole set condition, this process has
to unfold organically. Factors like crowding (Whitney
& Levi, 2011), for example, could also differentially
impact performance in the whole set condition.
Adding variable levels of internal noise to our ideal-
observer models begins to account for these types
of differences (see Supplementary Figure 3). Although

our ideal observer simulations only served an illustra-
tive purpose and did not provide precise estimates of
how many faces were actually sampled by partici-
pants, they do provide a valuable and complementary
tool for gaining insight into the nature of subsampling
used by participants to perform ensemble coding. The
ideal observer simulations used in this study, when
considered together with the behavioural results
obtained using the subset method, provide a more
comprehensive perspective on the sampling strat-
egies participants may have used to compute and
establish ensemble representation for multiple facial
expressions. In future studies, it would be useful to
manipulate variance within an experiment and apply
the “external noise” technique (e.g., Allard & Cava-
nagh, 2012; Solomon, Morgan, & Chubb, 2011) or
some other sophisticated simulations or models (e.g.,
de Gardelle & Summerfield, 2011; Li, Herce Castañón,
Solomon, Vandormael, & Summerfield, 2017), to
further explore the effect of variance on the compu-
tational efficiency of high-level ensemble coding.

Across three experiments, we ruled out the use of
an extremely economical one-face sampling strategy
and demonstrated ensemble coding for facial
expressions (because at least two faces were inte-
grated with one another), yet our results also point
to an averaging process which lacked efficiency. As
our new results suggest, it is likely that a limited
number of (i.e., four or less than four) noise-perturbed
faces, as opposed to a whole set including 16 faces,
nor even a majority of a set, contributed to the aver-
aging process in the present case. To conclude, our
new findings corroborate the assumption that aver-
aging multiple facial expressions could be achieved
by limited-capacity subsampling. Whether or not its
strength and efficiency are determined by factors
like the variance of a set remains an open question
to be examined in future studies.

Note

1. Due to the limitation of the refresh rate of the screen, the
actual presentation of a 500 ms display was 493–494 ms,
Similarly, for the 100 ms display, the actual presentation
time was 93–94 ms.
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